LGBM Hyperparameters
lgbm_parameters = {
'metric': 'rmse',
'n_jobs': -1,
'n_estimators': 50000,
'reg_alpha': 10.924491968127692,
'reg_lambda': 17.396730654687218,
'colsample_bytree': 0.21497646795452627,
'subsample': 0.7582562557431147,
'learning_rate': 0.009985133666265425,
'max_depth': 18,
'num_leaves': 63,
'min_child_samples': 27,
'max_bin': 523,
'cat_l2': 0.025083670064082797
}
lgbm_parameters = {
'metric': 'rmse',
'n_jobs': -1,
'n_estimators': 10000,
'reg_alpha': 10.924491968127692,
'reg_lambda': 17.396730654687218,
'colsample_bytree': 0.21497646795452627,
'subsample': 0.7582562557431147,
'learning_rate': 0.01,
'max_depth': 12,
'num_leaves': 32,
'min_child_samples': 16,
'max_bin': 256,
'cat_l2': 0.025083670064082797
}
early_sr=64
params_lgb = {
"task": "train",
"boosting_type": "gbdt",
"objective": "regression",
"metric": "rmse",
"learning_rate": 0.007899156646724397,
"num_leaves": 77,
"max_depth": 77,
"feature_fraction": 0.2256038826485174,
"bagging_fraction": 0.7705303688019942,
"min_child_samples": 290,
"reg_alpha": 9.562925363678952,
"reg_lambda": 9.355810045480153,
"max_bin": 772,
"min_data_per_group": 177,
"bagging_freq": 1,
"cat_smooth": 96,
"cat_l2": 17,
"verbosity": -1,
"bagging_seed": SEED,
"feature_fraction_seed": SEED,
"seed": SEED
}
lgbmparams = {'random_state': SEED,
'metric': 'rmse',
'n_estimators': N_ESTIMATORS,
'n_jobs': -1,
'cat_feature': [x for x in range(len(cat_features))],
'bagging_seed': SEED,
'feature_fraction_seed': SEED,
'learning_rate': 0.003899156646724397,
'max_depth': 99,
'num_leaves': 63,
'reg_alpha': 9.562925363678952,
'reg_lambda': 9.355810045480153,
'colsample_bytree': 0.2256038826485174,
'min_child_samples': 290,
'subsample_freq': 1,
'subsample': 0.8805303688019942,
'max_bin': 882,
'min_data_per_group': 127,
'cat_smooth': 96,
'cat_l2': 19
}
{min_child_weight: 16.66678543930681,
min_data_in_leaf: 90,
num_leaves: 3,
subsample: 0.9379919580619296,
colsample_bytree: 0.9685054958137231,
scale_pos_weight: 1.3855266087693392}
Source: Various Kaggle notebooks.