XGBoost Hyperparameters
xgb_params = {
'random_state': 1,
'n_jobs': 4,
'booster': 'gbtree',
'n_estimators': 10000,
'learning_rate': 0.034682894846408095,
'reg_lambda': 1.224383455634919,
'reg_alpha': 36.043214512614476,
'subsample': 0.9219010649982458,
'colsample_bytree': 0.11247495917687526,
'max_depth': 3,
'min_child_weight': 6,
'tree_method': 'gpu_hist',
'gpu_id': 0,
'predictor': 'gpu_predictor'
}
early_stopping_rounds = 200
RMSE = 0.7163730825313033
xgb params = {
'learning_rate': 0.07853392035787837,
'reg_lambda': 1.7549293092194938e-05,
'reg_alpha': 14.68267919457715,
'subsample': 0.8031450486786944,
'colsample_bytree': 0.170759104940733,
'max_depth': 3
'n_estimators': 5000
}
early_stopping_rounds=300
RMSE = 0.7167068770798828
xgb_params = {
'random_state': 1,
'tree_method': 'gpu_hist',
'gpu_id': 0,
'predictor': 'gpu_predictor',
'n_jobs': 4,
'booster': 'gbtree',
'n_estimators': 10000,
'learning_rate': 0.03628302216953097,
'reg_lambda': 0.0008746338866473539,
'reg_alpha': 23.13181079976304,
'subsample': 0.7875490025178415,
'colsample_bytree': 0.11807135201147481,
'max_depth': 3
}
RMSE: 0.716423430212675
xgb_params = {
'learning_rate': 0.15834717111407332,
'reg_lambda': 0.008347697504479864,
'reg_alpha': 28.61195680804279,
'subsample': 0.9996345489574131,
'colsample_bytree': 0.10330010325726227,
'max_depth': 2,
"n_estimators":7000,
"random_state":42
}
'n_estimators': 10000,
'lambda': 0.002737255187493384,
'alpha': 7.1401361029365435e-06,
'colsample_bytree': 0.0943116642365347,
'subsample': 0.14136126196670723,
'learning_rate': 0.013736831072935482,
'max_depth': 1,
'min_child_weight': 114
{'n_estimators':2500,
'max_depth' : 3,
'learning_rate': 0.1/0.13,
'colsample_bytree':0.13/0.11,
'subsample':1/0.99,
'random_state':1,
'reg_alpha':25.9987,
'booster':'gbtree',
'min_child_weight':1.1}
params_xgb = {
'lambda': 0.7044156083795233,
'alpha': 9.681476940192473,
'colsample_bytree': 0.3,
'subsample': 0.8,
'learning_rate': 0.015,
'max_depth': 3,
'min_child_weight': 235,
'random_state': 48,
'n_estimators': 30000}
{'tree_method': 'gpu_hist',
'subsample': 1.0,
'reg_alpha': 30,
'random_state': 0,
'n_estimators': 500,
'min_child_weight': 3,
'max_depth': 5,
'learning_rate': 0.15,
'gamma': 0.2,
'colsample_bytree': 0.7,
'n-jobs': -1}
RMSE = 0.719725592318301
{'tree_method': 'gpu_hist',
'subsample': 0.8,
'reg_alpha': 20,
'random_state': 0,
'n_estimators': 500,
'min_child_weight': 3,
'max_depth': 5,
'learning_rate': 0.15,
'gamma': 0.0,
'colsample_bytree': 0.5}
RMSE = 0.7199459090974294
n_estimators=2500,
max_depth = 2,
learning_rate=0.1,
colsample_bytree= 0.5,
subsample=0.8,
random_state=1,
reg_alpha = 40,
min_child_weight=5,
gamma=0.0,
tree_method = 'gpu_hist'
n_estimators=1375,
max_depth = 3,
learning_rate=0.14,
colsample_bytree= 0.5,
subsample=0.99,
random_state=1,
reg_alpha = 25.4
n_estimators=1000,
max_depth = 3,
learning_rate=0.14,
colsample_bytree= 0.5,
subsample=0.99,
random_state=1,
reg_alpha = 25.4,
tree_method = 'gpu_hist'
learning_rate=0.05,
max_bin= 165,
max_depth= 5,
min_child_samples= 150,
min_child_weight= 0.1,
min_split_gain= 0.0018,
n_estimators= 41,
num_leaves= 6,
reg_alpha= 2.0,
reg_lambda= 2.54,
objective= 'binary', n_jobs= -1
*("min_child_samples", "min_split_gain", "num_leaves")might not be used.
Source: Various notebooks on kaggle